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Physical analogy between continuum thermodynamics and classical mechanics

Alex Umantsev*
Department of Natural Sciences, The University of North Carolina at Fayetteville, 1200 Murchison Road,
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~Received 26 May 2003; published 28 January 2004!

The main focus of this paper is the profound physical analogy between a continuum thermodynamical
system, which evolves with relaxation under~possibly! nonisothermal conditions, and a classical mechanical
system of a few interacting particles moving with dissipation in~possibly!, time-dependent nonconservative
fields. This analogy is applied to the problem of phase transitions in a one-dimensional thermodynamic system.
The thermomechanical analogy stems from the validity of variational methods in mechanics and thermody-
namics and allows for a different interpretation of the dynamical selection principle in the theory of pattern
formation. This physical analogy is very helpful for understanding different nonlinear thermodynamic phe-
nomena and for developing intuition in numerical simulations.
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I. INTRODUCTION

Equilibrium and dynamical analysis of heterogeneo
thermodynamic systems has been taking a stride forwar
the past few years. Much of the credit for this progre
should be given to the introduction and development of
continuum methods in the thermodynamics of heterogene
systems. Conceived in different scientific communities, th
methods received different names: Ginzburg-Landau
physics @1#, Cahn-Hilliard in materials science@2#, phase
field in applied mathematics@3#, although the underlying
idea of all these methods is the same. In order to characte
different thermodynamic states of the system, one attem
to introduce a set of continuum variables with distinctly d
ferent values at different states. Such variables obey dyna
equations that describe evolution of the thermodynamic s
tem. This method represents a whole paradigm, which
spread to many different branches of science beyond ther
dynamics.

The success of the continuum method is mainly due
two reasons. It opens the door for a broad range of va
tional methods to be used in thermodynamics@4# and, on the
other hand, proves to be extremely convenient in numer
realization for computer simulation of different sorts
transformations in thermodynamic systems@5,6#.

In the course of the development of these ideas, a p
found physical analogy has been found between the ste
motion of a scalar thermodynamic field and the class
~nonrelativistic! mechanical motion of a particle@7–9,4#.
The thermomechanical analogy stems from the validity
variational methods in both mechanics and thermodynam
and is the main focus of the present paper. Although
subject of a thermomechanical analogy is not comple
original ~it suffices to recall the usage of the Legendre tra
formation in mechanics and thermodynamics@10#!, the par-
ticular one discussed here has not received sufficient a
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tion in the literature. Analogies helpfully link what is bein
studied to what is already understood and allow for devel
ing intuition, which is very useful in numerical simulation
In this article we intend to generalize this analogy to the c
of thermodynamic systems with many internal paramet
undergoing different phase transitions, and elucidate the c
nection of this analogy to a dynamical selection principle
the theory of pattern formation. Another goal is to show ho
mechanical intuition can be used for computer simulations
phase transitions.

II. EQUILIBRIUM IN A MULTICOMPONENT SYSTEM

A. Continuum thermodynamics of one-dimensional
heterogeneous systems

The first step in any theoretical description of a therm
dynamic system is the selection of a set of independent v
ables that specify the system and conjugate-dependent f
tions that characterize the state of thermodynam
equilibrium. One may argue that temperature and pressu
a better choice of independent variables than energy den
and specific volume because, regardless of the outer
straints of open or closed systems, conditions of equilibri
include constant temperature and pressure throughout,
not constant energy density or specific volume. In addition
temperatureT and pressureP, a thermodynamic system i
characterized by the densities ofn different components,
r1 ,r2 ,r3 ,...,rn , which specify the overall composition of
system and obey the conservation of particles condition:

d

dt E r id
3x50. ~1!

Another set of internal variables$h j% is associated with
the underlying physical differences between the states. In
framework of the Ginzburg-Landau theory of phase tran
tions @1#, the internal variables$h j% are associated with sym
metries of the states and are usually called order parame
~OP’s!. The thermodynamic potentials of the system becodu
©2004 The American Physical Society11-1
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continuous functions of these variables: F
5F$T,P;r i ,h j%. At equilibrium, the densities and order p
rameters take on specific values, which are functions of t
perature and pressure,$rE,hE%5J(T,P), and can be found
from the proper condition of thermal equilibrium. Away from
equilibrium they become dependent on time and eventu
relax back to these specific values. The difference betw
densities and order parameters is that the latter do not o
conservation conditions of the type of Eq.~1! and hence may
serve as measures of deviation from equilibrium in the s
tem. As the fundamental difference between the phase
their symmetries, the concept of an order parameter may
be used to define abulk phaseas a locally stable state o
matter homogeneous in the order parameters.

The presence of defects in the form of precipitates o
second phase or different homo- or heterophase interf
makes a system essentially inhomogeneous, that is, ther
pear gradients of the independent variables like densities
order parameters. There is a certain penalty on the inho
geneous system in the form of the ‘‘gradient energy’’ con
bution to the thermodynamic potentials, which appears
cause the densities of the thermodynamic potentialsŵ
become functions of the gradients of the thermodyna
variables as well as variables themselves. Thereby, the
modynamic potentials become functionals over the en
system:

F$T,P%5E ŵ~T,P;r i ,h j ;“r i ,“h j !d
3x. ~2!

We consider an open thermodynamic system, which
capable of exchanging energy, matter, or volume with
ambience that is, a grand canonical ensemble. The equ
rium conditions for an open system involve the grand
nonical potential of the whole systemV @11#. The derivation
of such conditions in the framework of the continuum a
proach is given, e.g., in Ref.@12#:

V[E v̂d3x→min, v̂5 f̂ 2m ir i . ~3!

Here v̂ is the density of the grand canonical potential, t
m i ’s are the chemical potentials of the components, and E
stein summation over the repeated indices is implied. In
paper the gradient-energy contribution is represented in
standard Ginzburg-Landau-Cahn-Hilliard form@1,2#. For the
free energy density of a heterogeneous system,f̂ , this yields
the following expression:

f̂ 5 f ~T,r i ,h j !1
1

2
“r ikr,i j“r j1

1

2
“h ikh,i j“h j , ~4!

whereka,i j (a5h or r! are symmetric matrices of the gra
dient free energy coefficients, which may depend on te
perature and pressure. The cross terms have been reta
because they may be of the same order of magnitude a
diagonal ones. Then equilibrium in the heterogeneous sys
satisfies the simultaneous Euler-Lagrange equations:
01611
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dV

dh j
[]h j

f 2kh, jk¹2hk50, ~5a!

dV

dr i
[]r i

f 2m i2kr,ik¹2rk50. ~5b!

Here and in the following]uw is a partial derivative ofw
with respect tou anddF/du is a variational derivative ofF
with respect tou(•) while other variables are held constan

At a constant temperature and pressure Eqs.~5! have so-
lutions with different symmetries, e.g., planar@13#, cylindri-
cal, or spherical @14#. However, only one-dimensiona
translation-invariant solutions are subjected to the therm
mechanical analogy discussed in this article. Using tran
tion invariance of the one-dimensional solutions, the equi
rium Eqs. ~5! may be integrated once to yield the fir
integral in the form@12#:

v̆[ f ~T,r i ,h j !2m ir i2
1

2

dr i

dx
kr,i l

dr l

dx
2

1

2

dh j

dx
kh, jk

dhk

dx

5const. ~6!

In Eqs.~3!, ~4!, and~6! and all that follow, the bare quantitie
stand for local densities of thermodynamic functions, t
careted quantities are defined as the sums of the local
gradient contributions and stand for nonlocal densities
thermodynamic functions, while the quantities with the bre
~ø! are defined as the differences of the local and grad
contributions.

Applying the first integral, Eq.~6!, to a bulk phase, the
constant of integration is identified as the negative of
hydrostatic pressureP:

P5m ir i
E2 f ~T,r i

E ,h j
E!. ~7!

Entropy, volume, and other thermodynamic functions may
found with the help of the corresponding Legendre transf
mation acting on the grand canonical potentials. For
stance, the internal energy functions are found through
Legendre transformation in temperature:

$E,ê,ĕ,kE%5~12T]T!$V,v̂,v̆,k%. ~8!

The approach outlined for Eqs.~1!–~8! describes a pro-
cess of phase transitions iff represents a multiwell function
of OP’s. Depending onT andP, Eq.~6! has different periodic
and nonperiodic one-dimensional solutions. The nonperio
two-well solution describes a transition region between
two phases~a! and ~b! coexisting at equilibrium, that is, an
interface, while the nonperiodic one-well solution describ
a critical nucleus@13#.

As is known@15#, all properties of an interface at equilib
rium are completely determined by just one intensive qu
tity, the surface tensionor specific surface energy,s. The
surface tension is defined as the excess of the approp
thermodynamic potential of the system with an interface,
unit area of the interfaceA, compared to that of the homo
geneous bulk phase occupying the same volume. The ap
priate thermodynamic potential must be equal in both pha
1-2
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TABLE I. Dictionary of the thermomechanical analogy.

Continuum thermodynamics~1D systems! Classical mechanics of many particle

Equilibrium in an open system Dynamics in a conservative system
Clausius’ principle Hamilton’s principle
Spatial coordinatex ~1D system! @x1 ,x2# Time t @ t1 ,t2#

Thermodynamic variables$r i ,h j% Generalized coordinates
Gradient free energy coefficientska,i j Generalized masses
Negative of the local density of the potentialv Potential functionP
Density of the gradient energy Kinetic energyK
Density of the grand canonical potentialv̂ Lagrangian
The quantityv̆ Negative of the Hamiltonian
Equilibrium equations Lagrange equations
PressureP Total mechanical energy (K1P)
Total grand canonical potentialV Action
The surface energy ‘‘Abbreviated action’’
Particle conservation condition No simple analogy

Relaxation dynamics Dissipative dynamics
TDGLE Lagrange equation with dissipation
Velocity over relaxation coefficientV/g i Dissipative coefficient
Dissipative functionF Rayleigh’s function

Nonisothermal dynamics Dynamics in external fields
Temperature Time-dependent external field
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This requirement caused Gibbs to select the grand cano
potential for the definition of surface tension. Thus the e
pression for the surface tension is

s[
V2Vbulk

A
5E

a

b

~v̂1P!dx. ~9!

Using Eqs.~3!, ~4!, ~6!, and~7! with Eq. ~9!, we obtain that
the surface energy of a flat interface may be expresse
follows @12#:

s5E
a

b H dr i

dx
kr,i j

dr j

dx
1

dh i

dx
kh,i j

dh j

dx J dx. ~10!

The boundaries of integration fromxa to xb are equivalent to
going from2` to 1`. Note that, although the bulk phase
are included in the integration, the integral in Eq.~10! does
not diverge because the integrand vanishes in both b
phases.

B. Mechanical analogy

A profound physical analogy may be brought to bear
tween a one-dimensional~1D! thermodynamic system a
equilibrium and a conservative classical-mechanical~Hamil-
tonian! system of several coupled point masses moving i
potential field. This analogy is based on the application
variational principles in thermodynamics and mechan
Table I provides a summary of the analogous terms in th
modynamics and classical mechanics. According to this a
ogy the spatial coordinatex of a 1D thermodynamic system
is analogous to the timet of a mechanical system; (r i ,h j )
are analogous to the generalized coordinates of the parti
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gradient free energy coefficients are analogous to the ge
alized masses of the particles; and (i 1 j 21) is the number
of degrees of freedom of a mechanical system. In the fra
work of this analogy, the negative of the local density of t
grand canonical potential~2v! is analogous~8! to the me-
chanical potential functionP, while the sum of the gradien
free energy terms is analogous~8! to the total kinetic energy
of the particles of the mechanical system,K:

P82v~r i ,h j ;T,m i !5m ir i2 f ~T,r i ,h j !, ~11a!

K8
1

2

dr i

dx
kr,i l

dr l

dx
1

1

2

dh j

dx
kh, jk

dhk

dx
. ~11b!

The density of the grand canonical potentialv̂, Eqs.~3! and
~4!, is analogous to the Lagrangian of the mechanical sys
and the quantityv̆, Eq. ~6!, to the negative of the Hamil-
tonian. Notice thatv̆ can be obtained fromv̂ with the aid of
the Legendre transformation in (“r i ,“h j ) @see Eqs.~3!,
~4!, and ~6!#. Then Eqs.~5! correspond to Newtonian equa
tions of motion of a mechanical system in either Lagrang
or Hamilton’s formulation. The pressureP is analogous to
the total mechanical energy of the system (K1P) and the
condition of thermodynamic equilibrium, Eq.~6!, that is, the
constancy of pressure throughout the system, is analogou
the conservation of the mechanical energy. The energ
conserved because the Hamiltonian does not depend ex
itly on time and the pressure is constant becausev̆ does not
depend explicitly on the coordinatex. The total grand ca-
nonical potential of the thermodynamic systemV, Eq. ~3!, is
analogous to the action of the mechanical system and
surface energys, Eq. ~10!, to the ‘‘abbreviated action’’@16#.
1-3
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ALEX UMANTSEV PHYSICAL REVIEW E 69, 016111 ~2004!
Then the minimization of the surface energy is analogou
the principle of least action for the mechanical system.

The thermomechanical analogy can be used for better
derstanding the problem of phase transitions. For insta
application of the formalism of action-angle variables to
one-component thermodynamic system with a single sc
order parameter helps identify and interpret different equi
rium states in the system: the bulk phasesa and b corre-
spond to unstable~saddle-type! rest points separated by
stable ~center-type! rest pointg of the mechanical system
with one degree of freedom~see Fig. 1!. Heterogeneous
equilibrium states correspond to bound solutions of the m
chanical system, e.g., periodic thermodynamic states to p
odic mechanical solutions@Fig. 1~a!#. Due to unboundness o
the free energyf, Eq. ~4! and, hence, potentialP, Eq. ~11a!,
only one type of periodic motion is possible, oscillation~no
rotations!. The interface between the bulk phasesa and b
corresponds to theheteroclinic trajectorythat connects two
different rest points with equal potential energiesP @Fig.
1~b!#. A critical nucleus corresponds to ahomoclinic orbit
that connects one rest point of lower potential energyP to
itself, which is possible only for a ‘‘tipped-off’’ potentialP
~not equal depths of the wells!, as shown in Fig. 2~a!.

Notice that in the transformation from thermodynamics
mechanics the equilibrium states exchange their stabil
due to the negative sign in Eq.~11a!. For instance, mechani
cal periodic solutions are stable, while their thermodynam
counterparts are not. The latter, however, do appear in
processes of phase transitions and the systems underg
the transformation spend a great deal of time in the vicin
of the periodic states@5#.

FIG. 1. Even potential functionP corresponds to thermody
namic equilibrium between phasesa andb. Undamped oscillator is
the mechanical analogue of an equilibrium heterogeneous 1D
modynamic system.a, b, andg are rest points of the point mass.~a!
Periodic oscillator: the shaded circles indicate the turning point
the point mass.~b! Heteroclinic orbit: the filled~b! and open~a!
circles indicate initial and final positions of the point mass~stable
bulk phases!.
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III. DYNAMICS IN A ONE-COMPONENT SYSTEM

A. Isothermal dynamics

Away from equilibrium the thermodynamic system r
laxes back to an equilibrium state, that is, one of the so
tions of Eqs.~5!. To characterize the response of a noneq
librium system, in compliance with the second law
thermodynamics, Onsager assumed it to be linearly pro
tional to the thermodynamic driving force, which is the d
viation of the system from equilibrium@17#. Mandel’shtam
and Leontovitch implemented these ideas in a seminal pa
@18#, where they studied relaxations and scattering of so
in liquids without phase transitions. For the degree of rel
ation they introduced the evolution equationḣ}
2(]V/]h)T,P , which Landau and Khalatnikov adopte
later in their study of the absorption of sound in the vicin
of a second-order phase transition@19#.

In heterogeneous media the gradient-energy contribu
is essential and the thermodynamic potentials are functio
@see Eq.~2!#. Hence, the local thermodynamic forces a
expressed as the variational derivatives of the grand pote
@left-hand sides of Eqs.~5!# instead of the partial ones. Th
general equation of the order parameter evolution takes
form, which came to be known as the ‘‘time-depende
Ginzburg-Landau equation’’~TDGLE!:

] th j52g j

dV

dh j
~no summation!. ~12!

The response coefficientsg j set the relaxation time scale
proportional tog j

21. Relaxation of densities follows a differ
ent evolutionary path, which is described by the so-cal

r-

f

FIG. 2. Tipped-off potential functionP corresponds to thermo
dynamic preference of a stable phaseb compared to a metastabl
phasea. Damped oscillator is the mechanical analog of a travel
wave in the thermodynamic system. The filled circles indicate
initial positions, the open circles indicate the final position, and
shaded circle indicates the turning point of the point mass.~a! Ho-
moclinic orbit; ~b! critically damped oscillator;~c! ‘‘marginally’’
damped oscillator.
1-4
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PHYSICAL ANALOGY BETWEEN CONTINUUM . . . PHYSICAL REVIEW E69, 016111 ~2004!
Cahn-Hilliard equation because the densities obey the
ticle conservation condition~1!. Relaxation of density is no
considered in this paper because we were not able to e
lish an analogy between the constraint~1! and classical me-
chanics.

An analogy can be established between translat
invariant motion in a relaxing thermodynamic system, wh
satisfies Eqs.~12!, and motion of particles in a dissipativ
mechanical system with the frictional forces proportional
their velocities. Such a system is described by Rayleig
dissipative function, whose partial derivatives yield the fr
tional forces that should be added to the right-hand side
the Lagrange equations@20#. Translation-invariant solutions
of Eq. ~12! represent waves,$h j5h j (x2Vt)%, which travel
with constant speedV and obey the simultaneous equatio

kh, jk

d2hk

dx2 1
V

g j

dh j

dx
2]h j

v50 ~no summation in j !.

~13!

The sought thermomechanical analogy will be establishe
on the top of the above described equilibrium analogy,
coefficientsV/g i in Eq. ~13! will be brought into correspon
dence with the dissipative coefficients of Rayleigh’s functi
~see Table I!.

The thermomechanical analogy helps develop an intui
understanding of the dynamics of phase transitions. For
stance, it clearly shows that in the dynamical case the e
librium types of heterogeneous solutions, periodic, criti
nucleus, and stationary interface, are destroyed because
correspond to the conservation of the mechanical energy~see
Fig. 2!. They are replaced, however, by traveling waves w
different speedsV. The thermomechanical analogy als
helps interpret theprinciple of selectionof such waves, tha
is, to determine the unique velocity of a wave that will
realized in a physical or numerical experiment with giv
temperature and pressure. Decomposition of an unst
stateg, for instance, may propagate with many accepta
velocitiesV, according to Eq.~13! @21#. This corresponds to
the damped oscillations of a particle about a stable rest p
g with different values of the friction coefficient~Fig. 2!.
Recall that the thermomechanical analogy changes the
bilities of the equilibrium states of the system~rest points!.
The asymptotically stable front solution, however, cor
sponds to the case of ‘‘marginal stability’’@7,8#, that is, the
waves that move more slowly are unstable to perturbati
while those that move faster are stable. From the standp
of the thermomechanical analogy, the asymptotically sta
wave of decomposition of an unstable state corresponds
particle motion withcritical damping@Fig. 2~b!#.

An interface between a stable~b! and a metastable~a!
state corresponds to a wave described by a heteroclinic
jectory between two rest points with different potential en
gies P. It cannot move at a steady pace with an arbitra
speed. Instead, the speedV of the wave~interface! is selected
as an eigenvalue of the boundary problem Eq.~13!, that is,
for dissipative coefficients smaller than the ‘‘marginal’’ tr
jectories are unbounded, while for greater ones trajecto
never reach the rest point~a! @see Fig. 2~c!#. Hence, the
01611
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selected wave~interface! also possesses a ‘‘marginal pro
erty,’’ which is best revealed by the thermomechanical an
ogy.

The thermomechanical analogy also allows one to gen
alize the relaxational dynamics by including the cross ter
between the thermodynamic ‘‘driving forces’’ and respons
The simultaneous generalized equations~GTDGLE’s! take
the form

dV

dh j
1

]F
]~] th j !

50, ~14!

whereF is a positive definite dissipative function:

F[
1

2
~] th j !t jk~] thk!.0,

t jk5tk j , t j j 5g j
21.0. ~15!

Using Eq.~14! and the Euler relation for homogeneous fun
tions of the second order, it is easy to show that the rate
the ‘‘free energy’’ change in the system is

dV

dt
[E dV

dh j
] th jd

3x52E 2Fd3x,0, ~16!

where the last inequality follows from Eq.~15!. For a trav-
eling wave$h j5h j (x2Vt)%, Eq. ~16! can be represented a
follows:

d

dx
v̆~T,h i !52VF .0. ~17!

For a thermodynamic system, Eqs.~16! and ~17! mean that
2F is the local rate of dissipation, which is analogous to t
dissipation of the mechanical energy due to friction in a m
chanical system@20#. Thermodynamically, Eq.~17! can also
be interpreted so that the wave speedV is proportional to the
chemical potential gradient with (2F)21 as the mobility.

B. Nonisothermal dynamics

Many transitions in open systems occur under conditio
of varying temperature, which is analogous to dynamics o
mechanical system in a changing external field. Tempera
variations in the system may, however, occur naturally
purely internal reasons, because evolution of a thermo
namic system almost always entails release of heat, whic
redistributed due to the thermal conduction. The recyc
heat affects the rate of relaxation if the thermal conductiv
is not infinitely large. In order to study nonisothermal d
namics, naturally, we need the heat equation, which would
thermodynamically consistent with the dynamics of pha
transitions that take place in the system. Details of the d
vation of a thermodynamically consistent generalized h
equation~GHE! compatible with the first and second laws
thermodynamics and the dynamics of phase transitions
presented in Ref.@22#. The GHE takes the form
1-5
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ALEX UMANTSEV PHYSICAL REVIEW E 69, 016111 ~2004!
C] tT5“~l“T!2
dE

dh j
] th j , C5~]Tê!V,h , ~18!

where C is the specific heat andl is the thermal conductivity.
The simultaneous coupling GTDGLE~14! and GHE ~18!
describe different regimes of interfacial dynamics. Equat
~18! can be used not only for phase transitions but also
any thermodynamic process where internal parameters r
simultaneously with heat release, for instance, the prob
of an excitable reaction-diffusion system@23#.

For the purposes of thermomechanical analogy we c
sider again a 1D traveling wave where$h i5h i(x2Vt),T
5T(x2Vt)%. Then Eq.~18! can be integrated once to yiel
the following simultaneous equations that describe non
thermal dynamics in a heterogeneous thermodynamic
dium with kE,i j 5const@24#:

d

dx
v̆~T,h i !52VF1

dT

dx
]Tv̆, ~19a!

and

2
dT

dx
5

V

l
~ ĕ2ĕ0!, ~19b!

where ĕ0 is the value of the quantityĕ far away from the
wave. In the light of the thermomechanical analogy Eq.~19a!
describes the dynamics of particles in a nonconservative
chanical system, where energy changes are due to Rayle
dissipation and the time-dependent field. Equation~19b!
shows that the fieldT changes self-consistently with othe
variables of the system.

IV. DISCUSSION

In the present paper we describe the physical analogy
tween one-dimensional evolution in a continuum thermo
namical system with relaxation and a classical mechan
system of a few interacting particles moving with dissip
tion. This analogy can be extended to evolution in noni
thermal systems with temperature being analogous to ti
dependent nonconservative field. However, a more spe
mechanical interpretation ofT and Eq.~19b! is still subject to
inquiry. The principal difference between mechanical a
thermodynamic systems is in the form of imposed co
straints: mechanical constraints are usually given in algeb
~holonomic! or differential~nonholonomic! form, while ther-
modynamic ones are presented in an integral form, e.g.,
~1!. The dimensionality of the thermodynamical system
limited to unity because of the obvious reason that the te
poral coordinate in classical mechanics is one dimensiona
is of interest to see if this analogy holds for physical mode
where time is a multidimensional quantity, or to look at
thermodynamic analog of a relativistic extension of t
Hamilton principle.

A structural analogy between descriptions of differe
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physical phenomena always improves our understandin
the subjects on both ends and allows for possible extens
into untested areas. It suffices to recall the electromechan
@25# and optomechanical@26# analogies. The thermome
chanical analogy sheds light on the problem of pattern f
mation during phase transitions and provides an interpr
tion of the marginal stability principle of dynamical selectio
~at least in one dimension!. A good use of the thermome
chanical analogy may be made through application of
mechanical intuition developed in problems of small ba
rolling on curved profiles to computer simulations of therm
dynamic problems, e.g.@8,9,24#. In Ref. @24#, Eqs.~19! were
applied to phase transitions in an adiabatic system where
mechanical analog of temperature changes self-consiste
with the particle coordinates. The author found that hete
clinic trajectories, which correspond to phase-transit
waves, exist at two different speedsV for the same condi-
tions in the system. However, only the wave with the grea
speed was found to be stable with respect to variations of
velocity. The latter may be viewed as a selection principle
one dimension.

On the basis of the thermomechanical analogy one m
also suggest generalizations of the thermodynamic desc
tion of a continuous system. In the present paper we s
gested the generalized TDGLE, Eq.~14!.

The source of the thermome`chanical analogy is identified
as the applicability of the variational principles in differe
branches of physics, like Hamilton’s principle in classic
mechanics, Fermat’s principle in optics, and Clausius’ pr
ciple in thermodynamics. Variational principles play a role
selection principles and allow one to choose a unique s
tion ~trajectory! out of a large set of solutions~trajectories!
that satisfy all other constraints of the problem. Motivated
Noether’s theorem@27#, which establishes the relation be
tween symmetry properties and conservation laws, we po
question: What property of a system entails validity of var
tional principles? As known, Hamilton’s and Fermat’s pri
ciples may be derived from the variational formulation
quantum mechanics@28#: particles and photons, so to spea
‘‘search’’ the neighboring paths to find the one with th
maximum ‘‘action’’ and cancel out through interference o
all others @29#. Hence, Hamilton’s and Fermat’s principle
are consequences of the wave nature of light and ma
However, variational principles of thermodynamics are n
reducible to the quantum mechanical ones@29#. The answer
to the question posed may help find a solution to one of
most fundamental problems of physics, the problem of
arrow of time: how to obtain irreversibility in a thermody
namic system from a completely reversible quantum m
chanical description of it.
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